Articles
-
The Handbook of Cluster Analysis
February 14, 2016
最近在看 The Handbook of Cluster Analysis(聚类分析手册)这本书。这本书不愧为手册,各种聚类方法都很全,作者也都是业内人士。
-
K-means, K-SVD, LC-KSVD and DPL
August 4, 2015
从 K-means 到 K-SVD11 M. Aharon, M. Elad, and A.M. Bruckstein, “The K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation”, the IEEE Trans. On Signal Processing, Vol. 54, no. 11, pp. 4311-4322, November 2006. http://www.cs.technion.ac.il/~elad/publications/journals/2004/32_KSVD_IEEE_TSP.pdf22 O. Bryt and M. Elad, Compression of Facial Images Using the K-SVD Algorithm, Journal of Visual Communication and Image Representation, Vol. 19, No. 4, Pages 270-283, May 2008. http://www.cs.technion.ac.il/~elad/publications/journals/2007/FaceCompress_KSVD_JVCIR.pdf33 R. Rubinstein, T. Peleg and M. Elad, Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model, IEEE Trans. on Signal Processing, Vol. 61, No. 3, Pages 661-677, March 2013. http://www.cs.technion.ac.il/~elad/publications/journals/2011/Analysis-KSVD-IEEE-TSP.pdf,到 LC-KSVD44 Zhuolin Jiang, Zhe Lin, Larry S. Davis. “Label Consistent K-SVD: Learning A Discriminative Dictionary for Recognition”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2651-2664. http://www.umiacs.umd.edu/~zhuolin/projectlcksvd.html,到 DPL55 Gu, S., Zhang, L., Zuo, W., & Feng, X. (2014). Projective dictionary pair learning for pattern classification. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 27 (pp. 793–801). Curran Associates, Inc. http://papers.nips.cc/paper/5600-spectral-clustering-of-graphs-with-the-bethe-hessian。
K-means 算法
任务:通过最近邻寻找能够表达数据样本 的最优编码本(codebook,既字典参数),既求解如下问题
-
《非线性最优化基础》学习笔记
August 2, 2015
《非线性最优化基础》 作者 福嶋雅夫 11 《非线性最优化基础》(豆瓣链接:http://book.douban.com/subject/6510671/)。福嶋雅夫(Masao Fukushima),教授,日本南山大学理工学院系统与数学科学系,日本京都大学名誉教授,加拿大滑铁卢大学/比利时那慕尔大学/澳大利亚新南威尔士大学客座教授。主页:http://www.seto.nanzan-u.ac.jp/~fuku/index.html。
该文为冯象初教授22 冯象初,教授,西安电子科技大学数学系。主页:http://web.xidian.edu.cn/xcfeng/有关非线性最优化的讲座的笔记。
主要内容
理论基础
- 凸函数、闭函数
- 共轭函数
- 鞍点问题
- Lagrange 对偶问题
- Lagrange 对偶性的推广
- Fenchel 对偶性
算法
- Proximal gradient methods
- Dual proximal gradient methods
- Fast proximal gradient methods
- Fast dual proximal gradient methods
-
The Expectation Maximization Algorithm and Finite Mixture Models
July 24, 2015
期望最大化算法和有限混合模型
概念主要来自于一次跟师弟的讨论。师弟提到 Expectation Maximization Algorithm (EM 算法) 方面的专家 Prof. Geoffrey John McLachlan 的一篇早期的论文就完全涵盖了多个最新顶级期刊论文的思想。就跟着追到该教授的主页,找到这两本书:Finite Mixture Models (有限混合模型) 和 The EM Algorithm and Extensions (期望最大化算法及其拓展)。
-
Kernel and Kernel: Reproducing Kernel Hilbert Space and Kernel Method
July 19, 2015
Kernel
再生核的定义
Definition. is a kernel if
-
核函数 对称 isymmetric: .
-
核函数 半正定 positive semi-definite
i.e., , the “Gram Matrix” defined by is positive semi-definite. (A matrix is positive semi-definite if , .)
-
-
Alternating Direction Method of Multipliers (ADMM)
July 18, 2015
Consider minimizing subject to affine constraints
The augmented Lagrangian
-
Augmented Lagrangian Method
July 17, 2015
Consider minimizing:
subject to equality constraints for
Inequality constraints are ignored for simplicity
Assume and are smooth for simplicity
At a constrained minimum, the Lagrange multiplier condition
holds provided are linearly independent
-
Introduction to Nonlinear Optimization
July 16, 2015
昨天晚上到今天,看完了一本之前一直看不完的书 《Introduction to Nonlinear Optimization》11 《Introduction to Nonlinear Optimization》 at 豆瓣: http://book.douban.com/subject/26551626/ and at Amazon: http://www.amazon.com/Introduction-Nonlinear-Optimization-Algorithms-Applications/dp/1611973643/ by Amir Beck 22 Amir Beck is an associate professor at The Technion—Israel Institute of Technology: http://iew3.technion.ac.il/Home/Users/becka.html。澄清了一些过去曾经误解的概念。MOS-SIAM Series on Optimization33 MOS-SIAM Series on Optimization: http://bookstore.siam.org/mos-siam-series-on-optimization/ 一系列优化的书都不错。连着借了三本,希望以后都能好好读完。现在这本非线性优化暂时只是翻完了,习题都没做,感觉习题也都挺有用的。
-
稀疏编码的优化问题
May 21, 2015
稀疏编码问题:
- 用 alternating minimization (ADM)
- Primal-dual 算法
- Soft threshold
-
几个基本优化问题
May 21, 2015
可以用 ALM11 Augmented Lagrange Multiplier 增广拉格朗日乘子法, LP22 Linear Programming 线性规划 和 IRLS 33 Iteratively Reweighted Least Squares 求解的四种基本优化问题
Question 1
least entropy & error correction